
SOLID Principles Cheatsheet
for real-world C# codebases & code reviews

S: Single Responsibility Principle (SRP)

Real Meaning: One reason to change, not one "thing" it does.
Why It Matters: Avoids "God classes" that block clean PRs & slow refactoring.
Personal Analogy: "If you can't give a clean commit message for the change, it's violating SRP."
Code Smell: Method/class summary has multiple and / or .
Actionable: Before adding a method, ask: "Is this a different concern?"
Read more on SRP
Short link: bytecrafted.dev/solid-srp

O: Open/Closed Principle (OCP)

Real Meaning: Add features by extension, not by editing old code.
Why It Matters: Keeps legacy code stable; new business rules plug in cleanly.
Personal Analogy: "If a new requirement means touching brittle switch statements, you're not
OCP."
Code Smell: Growing switch / if chains for types or behaviors.
Actionable: When adding a rule, prefer new handler/class over changing the old one.
Read more on OCP
Short link: bytecrafted.dev/solid-ocp

L: Liskov Substitution Principle (LSP)

Real Meaning: Subtypes must behave as expected, no surprises for callers.
Why It Matters: Swapping implementations shouldn't break existing tests or runtime logic.
Personal Analogy: "If a subclass throws where the base returns null, that's an LSP landmine."
Code Smell: Derived classes override with different exceptions, parameters, or semantics.
Actionable: Run parent class tests on every subclass; look for broken guarantees.
Read more on LSP
Short link: bytecrafted.dev/solid-lsp

https://bytecrafted.dev/series/solid/single-responsibility-principle-single-reason-to-change/
https://bytecrafted.dev/solid-srp
https://bytecrafted.dev/series/solid/open-closed-principle-without-overengineering/
https://bytecrafted.dev/solid-ocp
https://bytecrafted.dev/series/solid/rectangle-square-problem-liskov-substitution-principle/
https://bytecrafted.dev/solid-lsp

I: Interface Segregation Principle (ISP)

Real Meaning: Small, client-focused interfaces, never force unused methods.
Why It Matters: Reduces coupling, makes mocks/tests trivial, avoids NotSupportedException
landmines.
Personal Analogy: "If your interface summary needs bullet points, it's already too fat."
Code Smell: Implementations with empty or throw NotSupportedException methods.
Actionable: Extract groups of related methods into separate interfaces as soon as a client skips
one.
Read more on ISP
Short link: bytecrafted.dev/solid-isp

D: Dependency Inversion Principle (DIP)

Real Meaning: Depend on abstractions, not concrete implementations, flip the usual control.
Why It Matters: Makes business logic testable, swappable, and free of infrastructure glue.
Personal Analogy: "If you see new SqlRepo() in a service, that's DIP going up in flames."
Code Smell: Direct instantiation of dependencies inside business logic.
Actionable: Use constructor injection for every external dependency; mock in tests, swap in
production.
Read more on DIP
Short link: bytecrafted.dev/solid-dip

Read full series: bytecrafted.dev/series/solid.

Further Reading
Violating SOLID Principles
How does composition support SOLID?

Made by bytecrafted.dev - Real-world software design for working developers.

https://bytecrafted.dev/series/solid/interface-segregation-principle-unused-methods/
https://bytecrafted.dev/solid-isp
https://bytecrafted.dev/series/solid/dependency-inversion-csharp-testable-maintainable-code/
https://bytecrafted.dev/solid-dip
https://bytecrafted.dev/series/solid
https://bytecrafted.dev/posts/system-design/violating-solid-for-performance/
https://bytecrafted.dev/posts/software-design/composition-supports-solid-principles/
https://bytecrafted.dev/

